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I. INTRODUCTION

The amount of power required to run an exascale sys-
tem has become a challenging factor, as the recommended
power budget for such systems is typically around 20-
30 MW. These systems must operate power-efficiently to
achieve exascale computation under a limited power budget.
Hardware overprovisioning is a widely used technique to
address this challenge, which allows for the inclusion of
more compute nodes in a cluster without exceeding the
global power budget. Overprovisioning can be achieved by
limiting the power allocation to each compute node below
its Thermal Design Power (TDP) limit [[1]]. This approach is
commonly known as system-wide power capping (PCAP).
Modern processors now support PCAP, which enforces a
user-set PCAP limit by throttling the processor’s frequency
at the hardware level. However, uniform power allocation
across all nodes can severely impact the performance of jobs
that have high power needs. In such scenarios, non-uniform
power distribution across nodes while maintaining the global
power budget can prevent performance degradation and
power wastage.

Many researchers have proposed various power managers
(PMs) for distributing power non-uniformly across the nodes
to reduce slack generated due to uneven CPU usage on
multicore processors [2], [3l], [4], [5], [6]. Pshifter [5] and
GeoPM [4] introduced PMs for managing intra-application
slacks generated within an MPI application. Here, PM shifts
power from MPI ranks (power donors) encountering slacks
to other MPI ranks (power receivers). Inadomi et al. [2]
proposed a similar approach for single MPI applications
where slacks are generated not due to MPI ranks but due
to performance variability in processors. There are also
studies focusing on designing PMs for inter-application
power distribution in co-running applications [3], [6]. To
reduce inter-application slacks, PM shifts unused power
from applications having slacks (power donors) to other
applications fully utilizing CPUs (power receivers).

To the best of our knowledge, all prior works, whether
intra-application PMs or inter-application PMs, have con-
centrated on improving the performance of power receivers
by giving them unused power from power donors. None of
the existing PMs have considered rewarding power donors
who assisted power receivers in improving their performance
for better quality of service (QoS). In this poster, we propose
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a reward power manager (RPM) to extend existing PMs for
inter-application power distribution by introducing a reward
policy that also improves the performance of power donors.
This reward policy allows donors to reclaim the power given
to the power receivers in the past when the power donor
transitions back from slack to high-power usage region.

II. DESIGN AND IMPLEMENTATION
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Figure 1. Framework of proposed RPM for a cluster under PCAP

This section describes the work-in-progress of our Reward
Power Manager (RPM). Figure 1 demonstrates a scenario
where two different parallel jobs (jobA and jobB) are
running over a cluster under a user-set PCAP using different
sets of nodes. Each node has its own RPM instance sharing
a CPU along with the running job on that node. RPM runs
periodically at a fixed interval (100 ms epoch) that monitors
the node-level power usage at each epoch during the job’s
execution carried on the node. It detects slack in that job
by monitoring the node-level CPU usage. Whenever a slack
is detected, it reduces the PCAP of that node and transfers
this surplus power to a global power pool. It then changes
the node’s state as a power donor and notifies other RPM
instances running at other nodes using MPI. RPMs of the
nodes running under full CPU utilization would become
power receivers. The surplus power in the global power pool
would then be distributed among all power receivers. In this
prototype implementation, we currently distribute the power
equally among the receivers. However, in future work, we
will distribute the power according to the power sensitivity
of jobs running in the respective nodes. Each power receiver
RPM also records the total number of epochs for which
they receive the donated power. When the original power



donor transitions back from the slack into the high CPU
utilization phase, it will broadcast its state transition to all
other RPMs. Each power receiver RPM would then reward
the power donor by returning back a fraction of the received
power for the same number of epochs they received in the
past by reducing their respective PCAP. Here, RPMs return
a fraction of power than what they received. Otherwise,
performance gain at the power receiver will vanish if they
return the same amount of power they received in the past.
Hence, RPM promotes fair power utilization and improves
the quality of services (QoS).

III. EXPERIMENTAL EVALUATION

We evaluated our current implementation by simulating
a four-node cluster on a four-socket server. Each socket is
an Intel Xeon 5318H Cooper Lake processor that supports
PCAP in the range of (83W to 150W). We chose eight
exascale proxy applications from the EC suite. These
applications are SimpleMOC, RSBench, PathFinder, Quick-
Silver, CoMD, HPCCG, MiniFE and XSBench. They use
MPI+OpenMP programming model. In our exp, we run
a single MPI application (rank) at each socket with their
OpenMP threads pinned to each core of corresponding
sockets. We created two different mixes of apps (Mixl
and Mix2) shown in [3] Each mix is evaluated under three
different user-set PCAP (55%, 60% and 65% of the TDP).
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Figure 2. Power variation during application execution due to slack and
CPU intensive phases

In our chosen eight applications, slack is generated during
the execution of PathFinder, MiniFE, SimpleMOC, HPCCG
and XSBench(see Figire @ In Mix1, PathFinder and MiniFE
are the power donors, whereas RSBench and QuickSilver are
the power receivers. In Mix2, SimpleMOC, HPCCG and XS-
Bench are power donors, whereas CoMD is a power receiver.
At 55% PCAP, we observed performance gain in the range
of 1 to 32% for Mix1 and 1 to 27% for Mix2. However,
performance gain diminishes with increasing PCAP as the
reciever application doesn’t benefit much at higher PCAP. It
is worthwhile to note that even under limited PCAP, RPM
doesn’t degrade the performance of any applications.

Ihttps://proxyapps.exascaleproject.org/ecp-proxy-apps-suite/
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Figure 3. Evaluation of RPM on co-running jobs at different PCAPs

IV. CONCLUSION AND FUTURE WORK

In this poster, we presented the initial design of a Reward
Power Manager (RPM) for inter-application power distribu-
tion that doesn’t incur performance loss in any applications.
RPM transfers the unused power at a node running under
slack to other nodes running under high CPU utilization. It
uses a novel reward policy to return back the power to the
power donor node when it is outside the slack region. Our
experimental evaluation demonstrates a performance gain of
up to 32%.

In future work, we aim to extend the RPM by imple-
menting support for power distribution according to the
power sensitivity applications and implementing a hybrid
of inter and intra applications power distribution. We also
want to compare RPM experimentally with state-of-the-art
PMs such as DPS [6]. Finally, we would like to carry out
the experimental evaluation of the RPM on a real cluster.
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